大部分数据集包含多个变量,分析的目标通常是将这些变量相互关联,之前通过显示两个变量之间的joint distribution实现了这一目的。但是用统计模型来估计两组噪声观测值之间的简单关系是非常有用的。
Seaborn主要是一个在探索数据、分析数据中帮我们在视觉上进行强调而不是对数据进行分析。因此要获得与回归模型拟合相关的定量度量应该使用statsmodels包。
[pt_01]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/01.png
[pt_02]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/02.png
[pt_03]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/03.png
[pt_04]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/04.png
[pt_05]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/05.png
[pt_06]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/06.png
[pt_07]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/07.png
[pt_08]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/08.png
[pt_09]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/09.png
[pt_10]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/10.png
[pt_11]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/11.png
[pt_12]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/12.png
[pt_13]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/13.png
[pt_14]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/14.png
[pt_15]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/15.png
[pt_16]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/16.png
[pt_17]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/17.png
[pt_18]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/18.png
[pt_19]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/19.png
[pt_20]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/20.png
[pt_21]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/21.png
[pt_22]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/22.png
[pt_23]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/23.png
[pt_24]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/24.png
[pt_25]: https://nora-blogimg.oss-cn-hangzhou.aliyuncs.com/BlogImage/46_Seaborn_linear/25.png